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Optical Dot Gain:
Lateral Scattering Probabilities

Geoffrey L. Rogers*
Matrix Color, 26 E 33 Street, New York, New York 1001
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Abstract

In the development of the technology of halftone ima
ing there has been significant interest in physically m
eling the halftone microstructure. An important asp
of the microstructure is the scattering of light within t
paper upon which the halftone image is printed. Beca
of light scatter, a photon may exit the paper at a p
different from the point at which it entered the pap
The effect that this light scatter has on the perceived c
of the printed image is called optical dot gain. Opti
dot gain can be characterized by lateral scattering p
abilities, which is the probability that a photon enteri
the paper through a particularly inked region exits 
paper through a similar or different type inked regio
In this article we explicitly calculate these lateral sc
tering probabilities for the case of AM and FM halfto
screening. We express these probabilities in terms o
fractional ink coverage and the lateral scattering len
a quantity that characterizes the distance a photon t
els within the paper before exiting.

Introduction

Halftone imaging is a widely used technique for p
ducing printed images. Recently there has been sig
cant interest in physically modeling the halfto
microstructure to control the tone characteristics of 
halftone image better.1–4 An important aspect of this mi
crostructure is the scattering of light within the pap
upon which the image is printed. This effect of scatt
ing is called optical dot gain, because, for achrom
images, the ink dots are effectively larger as a resu
the scattering.5 Several authors have expressed opti
dot gain in terms of lateral scattering probabilities1,2

which is the probability that a photon having enter
the paper through a particular type inked region exits
paper through a similar or different type inked region.
this article we explicitly calculate these probabilities;
particular we calculate the ink–ink probability, which 
the probability that if a photon enters the paper through
inked region it also exits the paper through an inked
gion—a conditional probability we label P

ii
. Knowledge

of P
ii
 allows one to calculate all the other lateral scatter

probabilities.1 Although the calculation done here involv
a single array of dots, our results are applicable to a c
matic halftone image.9 We make the calculation for the ca
of both AM and FM halftone screening.2

In Ref. 1 it is shown that the ink–ink probability ca
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be expressed in terms of an infinite series—the Z
ries—involving the Fourier transforms of the dot sha
and the paper’s point spread function. Here, we expl
calculate P

ii
 and obtain a closed-form expression.

The model we construct to determine P
ii
 is as fol-

lows: a uniform stream of photons is incident on the
per within an area of one dot, and we calculate
fraction of the photons that exit the paper through 
dot and through all the other dots. This fraction is P

ii
.

We assume that the dots are circular with radius d and
that they are arranged in a square grid (screen) 
screen period r. The origin of the coordinate system is
the center of the dot through which the photons e
the paper (see Fig. 2).

We define 2πR(ρ)ρ,dρ as the probability that a pho
ton, having entered the paper through the dot centere
the origin, exits the paper through an annulus, also 
tered on the origin, with radius ρ and thickness dρ. R(ρ)
is the radial reflectance per unit area, and R(ρ) integrated
over the entire surface is the paper’s reflectance, R

p
:

  
    
R R dp =

∞
∫2
0

π ρ ρ ρ( ) . (1)

We define the radial covering distribution A(ρ), as
the probability that an arbitrary point at a distance ρ from
the origin is covered by ink.

Then the ink–ink probability is:

    
P R A dii =

∞
∫2
0

π ρ ρ ρ ρ( ) ( ) . (2)

In the section “Reflectance” we calculate the refl
tance per unit area, R(x,y), for photons that have enter
the paper through the area of a single dot. In the se
“Radial Covering Distribution” we calculate the cove
ing distribution A(ρ). In the section “Ink-Ink Probabil
ity” we carry out the integration of Eq. 2, making tw
approximations to obtain a closed-form expression
P

ii
. The calculations carried out in these sections are

AM halftone screening in which the number of dots wit
a region is constant and the size of the dots is varied. I
section “FM Halftone Screen” we calculate P

ii
 for FM

halftone screening: the dots are of constant size an
number of dots is varied. In the section “Ink-Ink Pro
ability for Diffusion PSF” we give the ink-ink probabi
ity as calculated with the diffusion point spread functi

Reflectance

The reflectance per unit area R(x,y) is the probability
that a photon exits the paper at the point x,y after having
Chapter V—Tone Reproduction and Gamuts—495
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entered the paper through the area of a dot of radid

centered on the origin and is given by:

    
R x y

R

S
H x x y y I x y dx dyp( , ) ( ' , ' ) ( ' , ' ) ' ' ,= − −∫∫

0
(3)

where S
0
 is the number of photons incident on the pa

per unit time, H(x,y) is the paper’s normalized poin
spread function, and I(x,y) is the incident photon distri
bution. The value H(x – x′,y – y′) is the probability that a
reflected photon having entered the paper at x′,y′ exits
the paper at x,y. The value I(x,y) is the number of pho
tons per unit area per unit time entering the paper a
point x,y and is given by:

    

I x y
S
d

x y
d

( , ) ,=
+











0
2

2 2

π
circ

where d is the radius of the dots and circ [ρ/d] is:

circ
ρ ρ

ρd

d

d






=
≤ ≤
>





1 0

0

,

,
.

The integral Eq. 3 is a convolution and can be ev
ated as the inverse Fourier transform of the produc
the transforms of H(x,y) and I(x,y). The transform of
H(x,y) is the paper’s modulation transfer function (MT
labeled     

˜ ( ),H k  with k the spatial frequency (lines per un
length). Owing to the assumed isotropy of the po
spread function, the MTF has circular symmetry.

The transform of the circ[ ] function is:

      

F circ
x y

d
d

J kd
kd

2 2
2 1 2+
























= π

π
π
( )

,

where J
1
 is a Bessel function.

Due to the circular symmetry, the inverse Four
transform can be expressed as a Hankel transform
one writes Eq. 3 as:

    
    

π ρ π π π ρd
R

R d H k J kd J k dk
p

2

1 00
2 2 2( ) ˜ ( ) ( ) ( ) ,=

∞
∫        

(4)

where ρ is the polar radial coordinate.

Figure 1.  Radial reflectance per unit area R(ρ) with d = 0.4r
and (a) ρ  = 0.1r, (b) ρ  = 0.6r, (c) ρ  = 1.5r, and (d) ρ  = 4.0r.
496—Recent Progress in Digital Halftoning II
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To evaluate Eq. 4, one must choose an approp
point spread function. A widely used PSF is6:

    
H K( ) ( / ),ρ π

ρ
πρ ρ=

2
22 0

where K
0
 is a modified Bessel function of the seco

kind. The parameterρ  is ρ  = 4 < ρ > and < ρ > is the
first moment of H called the lateral scattering length.
is the average lateral distance a photon travels w
the paper, and its inverse, < ρ >–1, is the approximate
bandwidth of the paper. The MTF is:

  
    

˜ ( )
( )

.H k
k

=
+

1
1 2ρ (5)

Integrating Eq. 4 using Eq. 5, one finds:

 
    

π ρ
π ρ π ρ πρ ρ ρ

π ρ π ρ πρ ρ ρ
d
R

R
d K d I d

d I d K dp

2
1 0

1 0

1 2 2 2 0
2 2 2

( )
( / ) ( / ) ( / ),

( / ) ( / ) ( / ),
,=

− ≤ ≤
<





 (6)

where I
0
 and I

1
 are modified Bessel functions of the fir

kind. Figure 1 shows the radial reflectance Eq. 6, wid
= 0.4r, for several different ρ .

Radial Covering Distribution

The radial covering distribution, A(ρ), is the probability
that an arbitrary point at a distance r from the origi
covered by ink. The value A(ρ) is the fraction of the cir
cumference of a circle, centered on the origin with
dius ρ, that lies on a dot. This is shown graphically
Fig. 2. The small circles are the dots, with radius d, and
the large circle has a radius ρ. The variable A(ρ) is the
sum of the bold arc-lengths of the large circle divid
by its circumference. If the dots overlap (d > r/2), then
for some values of r the sum of the arc-lengths is la
than the circumference—in this case, all points of 
large circle lie on a dot and A(ρ) = 1.

The value A(ρ) is calculated as follows: We defin
the neighbor distribution N(s) as the number of dot
whose centers lie at a distance s from the origin. We de

Figure 2. The small circles are dots, and the large circle has
dius ρ. Light is incident through the central dot. The value A(r
the sum of the bold arc-lengths of the large circle divided b
radius. The value θ is the angle subtended by the bold arc-leng
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fine θ(s,r) as the angle subtended by the arc-length c
ering a dot whose center lies at a distance s, as shown in
Fig. 2. Then, the radial covering distribution is:

        A N s s ds( ) ( ) ( , ) .ρ
π

θ ρ= ∫∞1

2 0 (7)

Both N(s) and θ(s, ρ) are derived in Ref. 2 and a
given by:

    

  

θ ρ

π ρ
ρ ρ

ρ ρ
ρ

( , )

,

arccos /( )

,

,

s

d s

s d s

s d s d

s d s d

=

≤ ≤ −
+ −( )[ ]

≤ − ≥ +
− ≤ ≤ +







2 0

2 2

0

2 2 2

or
(8)

and

    
N s p x sk k

k
( ) ( ),= −

=

∞

∑ δ
0

(9)

where δ(x) is a Dirac delta function and x
k
 is  with k a

natural number, and p
k
 is the number of combinations o

integers n and m such that k = n2 + m2. The quantity x
k
 is the

distance to the kth “set” of dots, and p
k
 is the number of

dots in the “set”; i.e., the number of dots at a distancx
k
.

The first few x
k
/r with nonzero p

k
 are 0, 1,  2,2,

  5 8, ;
and the corresponding p

k 
are 1, 4, 4, 4, 8, 4.7

Carrying out the integration in Eq. 7 and definin

    
A0 ( )

,
,

ρ
ρ

ρ
=

≤ ≤
>





1 0
0

d
d

and for k ≥ 1:

A
p x d x x d x d

x d x d
k

k k k k k

k k

( )
( / )arccos /( ) ,

,
ρ π ρ ρ ρ

ρ ρ
= + −( )[ ] − ≤ ≤ +

< − > +







2 2 2 2

0 or

one obtains:

   
    
A A

k
k( ) ( ).ρ ρ=

=

∞

∑
0

(10)

Figure 3 shows A(ρ) for dot radius d = 0.4r .

Equation 10 is correct for d ≤ r /2. If d > r/2, the
right side of Eq. 10 is greater than 1 for some value
ρ, in which case one sets A(ρ) = 1.

Figure 3.  The value A(ρ) with d = 0.4r.
v-

of

Ink–Ink Probability

Inserting the expressions for R(ρ), Eq. 6, and A(ρ), Eq.
10, into Eq. 2, one obtains:

 

    

π π π
ρ

π ρ πρ ρ ρ ρ

π
ρ

π ρ πρ ρ ρ ρ ρ

d
R

P
d

K d I d

d
I d K A d

p
ii

d

d k
k

2

1 00

2
1 0

1

2 1
2

2 2

2 2 2

= −










+

∫

∫∑ ∞

=

∞

( / ) ( /

( ) ( / ) ( / ) ( ) .
 (11)

Integrating the first term and dividing by πd2 one
obtains:

             1 2 2 21 1− K d I d( / ) ( / ).π ρ π ρ  (12)

This expression is the probability that a reflec
photon exits the paper through the same dot as 
through which it entered the paper.

Integrating the second term, one obtains a sum
integrals of the form:

    
x d

x d k

kk

k K
x d

x
d

−

+
∫

+ −











0

2 2 2

2
2

( / ) arccos .πρ ρ
ρ

ρ
ρ ρ      (13)

These integrals can be evaluated numerically w
little trouble, however it is possible to get a very ac
rate closed-form expression by making two approxim
tions. The first is an approximation to the arccos [ ]:

    
arccos ( ) .

x d
x

d xk

k
k

2 2 2
2 2

2
1+ −











→ − −
ρ

ρ ρ
ρ

The second approximation is:

    K K x xk k0 02 2 2( / ) ( / ) exp ( ) / ,πρ ρ π ρ π ρ ρ→ − −[ ]
for x

k
 - d ≤ ρ ≤ x

k 
+

 
d.

The errors in these approximations tend to can
each other for all d andρ  so that the expression

    
K x u d u duk d

d
0

2 22 2( / ) exp /π ρ π ρ
−∫ −[ ] −      (14)

is a very accurate approximation to Eq. 13. The inte
is easily evaluated, and one obtains for Eq. 14:

        
    

ρ π ρ π ρd
I d K xk2

2 21 0( / ) ( / ). (15)

Inserting Eqs. 12 and 15 into Eq. 11, one obtain

    R P K d I d I d Sp ii
− = − +1

1 1 1
21 2 2 2 2 2( / ) ( / ) [ ( / )] ( ),π ρ π ρ π ρ ρ (16)

where we define:

         
    
S p K xk k

k
( ) ( / ).ρ π ρ=

=

∞

∑ 0
1

2  (17)

The second term in Eq. 16, 2[I
1
(2πd/ ρ )] 2S( ρ ),

is the probability that reflected photons exit the pa
through dots other than the one through which they
tered the paper.

It is convenient to express P
ii
 in terms of the frac-

tional ink coverage rather than the dot radius. The 
cent area covered by ink, µ, is:

µ =
≤ ≤

+ + ≤ ≤




π
θ θ θ

( / ) , /

( cos ) /( sin ), / /

d r d r

r d r

2 0 2

1 2 2
    (18)
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where

    
θ π

= − 



2

2
2

arccos .
r
d

The expression Eq. 16 is correct for 0 ≤ µ ≤ p/4.
Numerical integration of Eq. 2 indicates that linear e
trapolation of Eq. 16 for π/4 ≤ µ ≤ 1 is an excellent ap
proximation.

One then obtains for the ink-ink probability:

R Pp ii
− µ =

− µ ≤ µ ≤
− − µ( ) − µ( )[ ] µ ≤ µ ≤






1

0 0

1 0 4

1 1 1 4 1
( )

( ), /

/ ( ), /

ξ π
ξ π (19)

where

    
ξ π ρ π ρ π ρ ρ( ) / / /µ = µ( ) µ( ) − µ( ) ( )[ ]2 2 2 21 1 1I r K r I r S

and µ
0
 = π/4. Note that ξ(µ) is the probability that a re

flected photon exits the paper through a nonink reg
after entering through an inked region.

Figure 4 shows P
ii
 versus µ for severalρ  and Fig. 5

shows P
ii
 as a function ofρ  for several µ. In the fig-

ures,ρ  is in units of r. As indicated by the curves in Fig
5 and as can be shown by Eq. 16, ifρ  >> r , then P

ii
 ª µ.

Figure 4. The value Pii as a function of µ for variousρ . (a) ρ  =
0.2r, (b) ρ  = 1.0r, (c) ρ  = 2.0r, and (d) ρ  = 6.0r.

Figure 5. The value Pii as a function of  ρ  for (a) µ = 0.1, (b) µ
= 0.4, (c) µ = 0.6, and (d) µ = 0.9.
498—Recent Progress in Digital Halftoning II
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This corresponds to the case of “complete scatterin1

Figure 6 shows the first and second terms in P
ii 

sepa-
rately (as a function of µ) for ρ  = 1.5. Curve (a) is th
probability that the light exits through the incident d
(b) is the probability it exits through the other dots, a
(c) is the sum of (a) and (b). For convenience, we h
set the paper reflectance equal to unity in all the figu

FM Halftone Screen

In this section we calculate the ink-ink probability 
an FM halftone screen. In such a method, all the 
have the same size and are square with dot area eq
a cell area and the number (or frequency) of dots is
ied. There are a number of techniques for determin
the exact placement of the dots.8 The calculation don
here is general in that our final result depends only
the average number of dots within a given region;
assume that within a region of constant tone, the 
are uniformly distributed. For ease in notation we 
sume the paper reflectance R

p
 is unity; for R

p
 < 1, the

final expression for P
ii  
is multiplied by R

p
.

We assume the dots are potentially located o
square grid array with period r . The dots are labeled b
their coordinates n, m, with the photons entering the p
per through the n = 0, m = 0 dot. We define P

nm
 as the

probability that a photon having entered the pa
through the dot 0, 0 exits the paper through the dot n, m.
We also define the stochastic variable p

nm
 as:

  
p

m n

m nnm =




1, ,

,

if thereisadotat
0, if thereisnodotat (20)

subject to the constraint:

       lim ' ,
, /

/

N n m N

N

nmN
p

→∞ =−
∑ = µ1

2
2

2

 (21)

where the ′ on Σ indicates that the n = m = 0 term is ex-
cluded from the sum (p

00 
∫ 1) and µ is the fractional ink

coverage. The left side of Eq. 21 is the average p
nm

 so that:

Figure 6. Comparision of the first and second terms of Eq
with ρ = 1.5r. (a) Probability that photon exits incident dot. (
Probability that photon exits any of the other dots. (c) Total p
ability that photon exits a dot, sum of (a) and (b).



 

o

 

t
-

y

t

ich
        <p
nm

> = µ  (22)

(excepting the n = m = 0 term).
The ink–ink probability is obtained by first summin

the probability that a photon exits the paper through
n, m cell, P

nm 
, over all cells that contain a dot (p

nm
 = 1),

then averaging over all realizations of the p
nm

 consistent
with Eq. 21:

           
    
P p P p Pii nm nm

nm
nm nm

nm
= =∑ ∑ .            (23)

For a uniform distribution, the average over all p
sible realizations of the p

nm
 is equivalent to the averag

defined by the left side of Eq. 21, so one can write:

         
    
P P P Pii nm

nm
= µ −









 +∑ 00 00.  (24)

As we assume R
p 
= 1, the sum is unity:

         
    

Pnm
nm

=∑ 1,  (25)

which simply states that the number of photons is c
served. The probability that the photons exit the sa
dot as that through which they entered the paper, P

00 
, is

given by Eq. 12 (where we approximate the square
with a circular dot with area equal to cell area) with d =
r /√π, so the ink–ink probability is:

     P
ii
 = 1 – (1 – µ)χ, (26)

with:

       
    
χ π ρ π ρ= ( ) ( )2 2 21 1K r I r/ / .            (27)

Unlike with the AM halftone screen, the probabili
here is linear with µ for all

  ρ.  The P
ii
 is shown as a func

tion of µ for several differentρ  in Fig. 7, and as a func
tion of ρ  for several different µ in Fig. 8. Forρ  >> r , the
AM P

ii
(µ) is equal to the FM P

ii
(µ).

Note that χ is the probability that a photon havin
entered the paper through a dot exits the paper outside
the dot. The different terms of P

ii
 can be interpreted b

writing Eq. 26 as P
ii 
= 1 – χ + µχ. In other words: [the

Figure 7. The value FM Pii as a function of µ for (a) ρ  = 0.2r, (b)
ρ  = 1.0r, (c) ρ  = 2.0r, and (d) ρ  = 6.0r.
g
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Figure 8. The value FM Pii as a function of ρ  for (a) µ = 0.1, (b)
µ = 0.4, (c) µ = 0.6, and (d) µ = 0.9.

probability that the photon exits through a dot (P
ii
)] =

[the probability it exits within the dot through which i
entered the paper (1 – χ)] + [the probability there is a
dot located at an arbitrary point (µ)] × [the probability
the photon exits the paper outside the dot through wh
it entered (χ)].

Ink–Ink Probability for Diffusion PSF

The MTF of the diffusion point spread function is:1

     
    

˜ ( )
/

( / )
,H k

R
q

ktp n

n n

n

=
+=

∞

∑1
1 21

2

2

σ
π σ  (28)

where q
n 
and σ

n
 are defined in Ref. 1 and t is the paper’s

thickness. The paper’s reflectance is:

    
R qp

n
n n= ∑ / ,σ 2

and the lateral scattering length is:

    
ρ π σ= ∑t

R
q

p n
n n2

3/ .

The diffusion ink–ink probability for AM screening
has the same form as Eq.19 with x(m) given by:

    

ξ

σ
πσ πσ πσ

( )

/ / / / / / ,

µ =

µ( ) µ( ) − µ( )[ ]
=

∞

∑2

1
2 1 1 1R

q
I r t K r t I r t S

p n

n

n
n n n n

were S
n
 is given by:

    
S p K x tn

k
k n k=

=

∞

∑
1

0 ( / ).σ

For FM halftone screening, P
ii
 has the same form as

Eq. 26 with c given by:

    
χ

σ
πσ πσ= ( ) ( )

=

∞

∑2

1
2 1 1R

q
I r t K r t

p n

n

n
n n/ / / / . (30)
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Conclusion

In this article, we explicitly calculate the probability th
a photon exits the paper through an inked region a
originally entering the paper through an inked regi
and we obtain a simple closed-form expression. This c
ditional probability completely contains the effects 
optical dot gain; i.e., knowledge of this probability a
lows one to account for the effects of optical dot gain
a halftone print completely. We calculate the probabi
for both AM and FM halftone screening.

The results reported here also allow a simple ca
lation of the Z that appear in the theory of the multi-in
halftone image.9
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