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Abstract be expressed in terms of an infinite series—the Z-se-
ries—involving the Fourier transforms of the dot shape
In the development of the technology of halftone imag-and the paper’s point spread function. Here, we explicity
ing there has been significant interest in physically modealculateP, and obtain a closed-form expression.
eling the halftone microstructure. An important aspect The model we construct to determiRgis as fol-
of the microstructure is the scattering of light within thelows: a uniform stream of photons is incident on the pa-
paper upon which the halftone image is printed. Becausger within an area of one dot, and we calculate the
of light scatter, a photon may exit the paper at a poinfraction of the photons that exit the paper through this
different from the point at which it entered the paperdot and through all the other dots. This fractiorPjs
The effect that this Iight scatter has on the perceived coldVe assume that the dots are circular with radiasid
of the printed image is called optical dot gain. Opticalthat they are arranged in a square grid (screen) with
dot gain can be characterized by lateral scattering protscreen period. The origin of the coordinate system is at
abilities, which is the probability that a photon enteringthe center of the dot through which the photons enter
the paper through a particularly inked region exits theéhe paper (see Fig. 2).
paper through a similar or different type inked region.  We define 2ZIR(p)p,dp as the probability that a pho-
In this article we explicitly calculate these lateral scat-ton, having entered the paper through the dot centered on
tering probabilities for the case of AM and FM halftonethe origin, exits the paper through an annulus, also cen-
screening. We express these probabilities in terms of thered on the origin, with radiysand thicknessdp. R(p)
fractional ink coverage and the lateral scattering lengthis the radial reflectance per unit area, &pl) integrated
a quantity that characterizes the distance a photon trawver the entire surface is the paper’s reflectaﬁ?%e
els within the paper before exiting.
R, = ZNJ'O R(p)pdp. (1)

We define the radial covering distributié{{p), as
the probability that an arbitrary point at a distapdeom
Ihe origin is covered by ink.

Then the ink—ink probability is:

Introduction

Halftone imaging is a widely used technique for pro-
ducing printed |mages Recently there has been signifi-
cant interest in physically modeling the halftone
microstructure to control the tone characteristics of the = 27TI°° R(p)A(p)pdp. (2)
halftone image bettér* An important aspect of this mi- 0

crostructure is the scattering of light within the paper Inthe section “Reflectance” we calculate the reflec-
upon which the image is printed. This effect of scattertance per unit are&(x,y), for photons that have entered
ing is called optical dot gain, because, for achromati¢che paper through the area of a single dot. In the section
images, the ink dots are effectively larger as a result dfRadial Covering Distribution” we calculate the cover-
the scattering.Several authors have expressed opticaing distributionA(p). In the section “Ink-Ink Probabil-
dot gain in terms of lateral scattering probabilitfes ity” we carry out the integration of Eq. 2, making two
which is the probability that a photon having enteredapproximations to obtain a closed-form expression for
the paper through a particular type inked region exits th®,. The calculations carried out in these sections are for
paper through a similar or different type inked region. InAM halftone screening in which the number of dots within
this article we explicitly calculate these probabilities; ina region is constant and the size of the dots is varied. In the
particular we calculate the ink—ink probability, which is section “FM Halftone Screen” we caleté P, for FM

the probability that if a photon enters the paper through ahalftone screening: the dots are of constant size and the
inked region it also exits the paper through an inked reaumber of dots is varied. In the section “Ink-Ink Prob-
gion—a conditional probability we labB|. Knowledge ability for Diffusion PSF” we give the ink-ink probabil-

of P, allows one to calculate all the other lateral scatteringty as calculated with the diffusion point spread function.
probabilitiest Although the calculation done here involves

a single array of dots, our results are applicable to a chro- Reflectance
matic halftone imag&We make the calculation for the case
of both AM and FM halftone screenifg. The reflectance per unit ard¥x,y) is the probability

In Ref. 1 itis shown that the ink—ink probability can that a photon exits the paper at the paigtafter having
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Figure 1. Radial reflectance per unit areadrfvith d = 0.4r Figure 2. The small circles are dots, and the large circle has ra-
and (a) p =0.1r, (b) p =0.6r, (c) p = 1.5r, and (d)p = 4.0r. diusp. Lightis incident through the central dot. The value A(r) is

the sum of the bold arc-lengths of the large circle divided by its
entered the paper through the area of a dot of ratliusradius. The valu@ is the angle subtended by the bold arc-lengths.

centered on the origin and is given by:

R(x,y) :&HH(’C —x'y =y, y)dx'dy',  (3) _ To evaluate Eq. 4, one must choose an appropriate
Sy point spread function. A widely used PSE is

where§ is the number of photons incident on the paper
per unit time,H(x,y) is the paper’s normalized point
spread function, antx,y) is the incident photon distri-
bution. The valuéd(x — X,y —y') is the probability that a

reflected photon having entered the paper gt exits first moment ofH called the lateral scattering length. It

the paper ak,y. The valud(x,y) is the number of pho- ;"0 2y erage lateral distance a photon travels within
tons per unit area per unit time entering the paper at tr}?‘le paper, and its inverse,p<>71, is the approximate
pointx,y and is given by: ! ! !

bandwidth of the paper. The MTF is:

2 _
H(p) =5—72-[K0(27773/P),

whereK, is a modified Bessel function of the second
kind. The parametgr isp = 4 <p > and <p > is the

0,2 2 [0
= S0 e Y Aky=— 1
I(x,y) = p— c1ch = H 1+ (h)Z (5)

whered is the radius of the dots and cig/d] is: Integrating Eq. 4 using Eq. 5, one finds:

el O - 2l / p)K,2ml/ p)I,2mp/p), 0<p<d
O<p<sd —R = _ _ _
circ%%@ p>ﬁ - R, 0= Boni/ prenl/ pKyemp/p,  d<p 6
wherel jandl, are modified Bessel functions of the first

The integral Eq. 3 is a convolution and can be eValu%ind. Figure 1 shows the radial reflectance Eq. 6, @ith
ated as the inverse Fourier transform of the product o

the transforms of(x,y) andI(x,y). The transform of 0.4r, for several differento.
H(x,y) is the paper’s modulation transfer function (MTF)
labeled F(x), with k the spatial frequency (lines per unit
length). Owing to the assumed isotropy of the poin
spread function, the MTF has circular symmetry.

The transform of the circ[ ] function is:

Radial Covering Distribution

t'I'he radial covering distributiod\(p), is the probability
that an arbitrary point at a distance r from the origin is
covered by ink. The valu&(p) is the fraction of the cir-

E [ o 2 cumference of a circle, centered on the origin with ra-
Fpire 2% Y H- 2 M, dius p, that lies on a dot. This is shown graphically in
g H d mkd Fig. 2. The small circles are the dots, with racipand
the large circle has a radips The variableA(p) is the
whereJ, is a Bessel function. sum of the bold arc-lengths of the large circle divided

Due to the circular symmetry, the inverse Fourierby its circumference. If the dots overlagphX r/2), then
transform can be expressed as a Hankel transform, arfidr some values of r the sum of the arc-lengths is larger

one writes Eq. 3 as: than the circumference—in this case, all points of the
9 large circle lie on a dot an&(p) = 1.
iR(p) = zrdj'”ﬁ(k)Jl(Zrkd)JO(Zriep)dk, (4) The valueA(p) is calculated as follows: We define
R, 0 the neighbor distributioN(s) as the number of dots
wherep is the polar radial coordinate. whose centers lie at a distarsom the origin. We de-
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Figure 3. The value (@) with d = 0.4r.
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fine B(s,r) as the angle subtended by the arc-length co

ering a dot whose center lies at a distag)@s shown in
Fig. 2. Then, the radial covering distribution is:

AP) = - J; N(98(s,P)cs (7)

Both N(s) and6(s, p) are derived in Ref. 2 and are

given by:
8(s p) =
0 2m 0<sp<d-s
BZarccos[(s2 +p? —dz)/(ZSp)], s-d<sp<s+d (8)
HO, p<s—-dor p=s+d

and
N(s)= 3 ppdlx; — ), (9)
k=0
whered(x) is a Dirac delta function ang is withk a

natural number, ang, is the number of combinations of

integersn andm such thak = n®+ n?. The quantity, is the
distance to théth “set” of dots, ang, is the number of
dots in the “set”; i.e., the number of dots at a distaqce
The first fewx/r with nonzerop, are O, 1*‘5’2'J3,w@;
and the correspondingare 1, 4, 4, 4, 8, 4.

Carrying out the integration in Eq. 7 and defining:

0<sp<sd
Ao(p):ﬁ?’ p
, p>d
and fork = 1:
A () = P arceod (¢ + p? =0} (2% p)] % —d s p= 3, +d
H 0 p<x-—-dor p>x, +d ’
one obtains:

A=Y Alp). (10)
k=0

Figure 3 showg\(p) for dot radiusd = 0.4r.
Equation 10 is correct fod < r/2. If d > r/2, the

right side of Eq. 10 is greater than 1 for some values
p, in which case one sefgp) = 1.

Ink—Ink Probability

Inserting the expressions f&p), Eq. 6, andA(p), Eq.
10, into Eq. 2, one obtains:

e? O 2 _ _O
—— b =2nf 0 - — K,2m/ p)l,2mp/ prpdp
R, o p O

241 o5 S (" 5 (11)
+(2m) 5 L2rl/p)y [, K2/ p)A,(p)pdp.
k=T

Integrating the first term and dividing byd? one
obtains:

1-2K,(2md / p)I, (27l / p). (12)

This expression is the probability that a reflected
photon exits the paper through the same dot as that
through which it entered the paper.

Integrating the second term, one obtains a sum of

Vintegrals of the form:

x,,+dl{(2 /_) D)Clg'l' _dzgjd
arccos .
Jo,-a Ko/ P @B—Zxkp J P (13)

These integrals can be evaluated numerically with
little trouble, however it is possible to get a very accu-
rate closed-form expression by making two approxima-
tions. The first is an approximation to the arccos [ |:

2 2 2
arccosak TP ~d° 8 1
g 2xp g p

The second approximation is:

K,2mp/p) ~ K2, / p)exp[-2m(p — x,)/ ],
forx -d<sp<x+d.

The errors in these approximations tend to cancel
each other for altl andp so that the expression

K@, /D", exp|-2m/pNd® -utdu  (14)
is a very accurate approximation to Eqg. 13. The integral
is easily evaluated, and one obtains for Eq. 14:

Vd? - (x, - )2

(15)
Inserting Egs. 12 and 15 into Eqg. 11, one obtains:

g i} )
%zl(mm PIK, (27, / D).

R'P,

p Tl

=1-2K,2md/ p)I,(2md/ p) + 21,2 / p)I*S(p),(16)

where we define:

S(p) = kz PeKo 2y, / p). a7
=1

The second term in Eq. 16, 12[2md/ p)]*S(p),
is the probability that reflected photons exit the paper
through dots other than the one through which they en-
tered the paper.

It is convenient to expred3, in terms of the frac-
tional ink coverage rather than the dot radius. The per-
cent area covered by inj, is:

O r(d/r)?, O<dsr/2

of =
W E(e+cose)/(1+sin9), rizsd<r/+2

(18)
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Figure 4. The value Pas a function ofifor variousp. (a) p =

0.2r, (b) p =1.0r, (c) p = 2.0r, and (d)p = 6.0r.
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Figure 5. The value Pas a function of p for (a) u= 0.1, (b)u
=0.4, (c)u=0.6, and (d)u=0.9.

where

9:7—T—2arccosDr H
2 Foat
The expression Eq. 16 is correct foxQu < p/4.
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Figure 6. Comparision of the first and second terms of Eq. 16
with p = 1.5r. (a) Probability that photon exits incident dot. (b)
Probability that photon exits any of the other dots. (c) Total prob-
ability that photon exits a dot, sum of (a) and (b).
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This corresponds to the case of “complete scattering”.
Figure 6 shows the first and second term&jisepa-
rately (as a function aof)) forp = 1.5. Curve (a) is the
probability that the light exits through the incident dot,
(b) is the probability it exits through the other dots, and
(c) is the sum of (a) and (b). For convenience, we have
set the paper reflectance equal to unity in all the figures.

FM Halftone Screen

In this section we calculate the ink-ink probability for
an FM halftone screen. In such a method, all the dots
have the same size and are square with dot area equal to
a cell area and the number (or frequency) of dots is var-
ied. There are a number of techniques for determining
the exact placement of the dét$he calculation done
here is general in that our final result depends only on
the average number of dots within a given region; we
assume that within a region of constant tone, the dots
are uniformly distributed. For ease in notation we as-
sume the paper reflectan&e is unity; forR < 1, the
. . . L p
final expression foP, is mulﬁplled bpr.

We assume the dots are potentially located on a

Numeri<_:a| integration of Eq. 2 indi_cates that linear ex-square grid array with periad The dots are labeled by
trapolation of Eq. 16 forv4 < p< 1 is an excellent ap- their coordinates, m, with the photons entering the pa-

proximation.
One then obtains for the ink-ink probability:
_ 8 1-4(), Ospsm/a
RIP (W) =
p Fi () Q.—[(l—u)/(l—po)]f(po), mla4<p<1(19)

where

&G0 =21, (2rur/ 5)[1{1(24“7/ B)- 1,(2run/ 5)3(,3)]
and

after entering through an inked region.

Figure 4 show®, versugu for severap and Fig. 5

showsP, as a function of for severaly. In the fig-

= 10/4. Note thag(p) is the probability that a re-
flected photon exits the paper through a nonink region

per through then = 0, m = 0 dot. We definé®_ _as the
probability that a photon having entered the paper
through the dot 0, 0 exits the paper through thendaot

We also define the stochastic variable as:

M, ifthereisadotatm,n
Pom = %), if thereisnodotatm,n (20)
subject to the constraint:
) N/2
lim Wn'm:;'mpnm =H, (21)

where the€ on X indicates that the = m= 0 term is ex-

ures,p is in units ofr. As indicated by the curves in Fig. cluded from the sump( [ 1) andu is the fractional ink

5 and as can be shown by Eq. 16 #>r, thenP, 2.
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coverage. The left side of Eq. 21 is the avemggso that:
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Figure 7. The value FM;Ras a function ofifor (a) p = 0.2r, = : _
—=_ —_ " — gure 8. The value FMPas a function ofp for (a) 1= 0.1, (b)
p =1.0r, (c) p=2.0r, and (d)p =6.0r. {= 0.4, (c)u= 0.6, and (d)u= 0.9.
P> =H (22)  probability that the photon exits through a dB}){ =

[the probability it exits within the dot through which it
entered the paper (1)9] + [the probability there is a

ot located at an arbitrary point){ x [the probability

e photon exits the paper outside the dot through which
it entered X)].

(excepting then = m= 0 term).

The ink—ink probability is obtained by first summing
the probability that a photon exits the paper through th
n, mcell,P,__, over all cells that contain a dqi ( = 1),
then averaging over all realizations of fe consistent

with Eq. 21: Ink—Ink Probability for Diffusion PSF
B = <gnpnmpnm> = ’;<an>an' (23)  The MTF of the diffusion point spread functiontis:
2
For a uniform distribution, the average over all pos- H(k) = Z 90/ 9y > (28)
sible realizations of thp, _is equivalent to the average R, & 1+@mkt/o,)

defined by the left side of Eqg. 21, so one can write: whereq, ando_are defined in Ref. 1 artds the paper's

thickness. The paper’s reflectance is:

O
P; :U§an = Py gt Foo- (24)
" H R,=Y q,/0},

As we assum® =1, the sum is unity:

dPm=1 (25)  and the lateral scattering length is:
which simply states that the number of photons is con- (p) = tm > 4, /a3,
served. The probability that the photons exit the same 2R, %

dot as that through which they entered the papgr.is

given by Eq. 12 (where we approximate the square dot The diffusion ink—ink probability for AM screening
with a circular dot with area equal to cell area) vdth  has the same form as Eq.19 with x(m) given by:
r/Vm, so the ink—ink probability is:

E(H) =
with: st (26) i Z_ﬂ 1(rjn/ 7o, /1) [Kl(r\/men/t)—Il(r\/men/t)sn],
R, &

X = 2K, (27001 )1, (2477 / B). (27)
weres, is given by:
Unlike with the AM halftone screen, the probability .
here is linear withu for all 5. TheP, is shown as a func- S, =S pKy(0,x,/0).
tion of u for several differeng in Fig. 7, and as a func- E=1

tion of p for several differenftin Fig. 8. Forg >>r, the ;

AM P, (1) is equal to the FNP, (1), £q I;grvslm T:agljfit\?ennet?;'reenm@“ has the same form as
Note thaty is the probability that a photon having —™" '

entered the paper through a dot exits the papéside

the dot. The different terms & can be interpreted by

writing Eq. 26 asP, = 1 —X + px. In other words: [the

:Rii q”I(r/«/TTO’ /t) (r/«/Twn/t). (30)
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Conclusion
4.
In this article, we explicitly calculate the probability that
a photon exits the paper through an inked region after
originally entering the paper through an inked region,
and we obtain a simple closed-form expression. This con-
ditional probability completely contains the effects of
optical dot gain; i.e., knowledge of this probability al- 5.
lows one to account for the effects of optical dot gain ir6.
a halftone print completely. We calculate the probability
for both AM and FM halftone screening. 7.
The results reported here also allow a simple calcu-
lation of theZ that appear in the theory of the multi-ink 8.
halftone imagé.
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